Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
414182 | Computational Geometry | 2015 | 15 Pages |
Abstract
We initiate the study of the following problem: Given a non-planar graph G and a planar subgraph S of G, does there exist a straight-line drawing Γ of G in the plane such that the edges of S are not crossed in Γ by any edge of G? We give positive and negative results for different kinds of connected spanning subgraphs S of G. Moreover, in order to enlarge the subset of instances that admit a solution, we consider the possibility of bending the edges of G not in S; in this setting we discuss different trade-offs between the number of bends and the required drawing area.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics
Authors
Patrizio Angelini, Carla Binucci, Giordano Da Lozzo, Walter Didimo, Luca Grilli, Fabrizio Montecchiani, Maurizio Patrignani, Ioannis G. Tollis,