Article ID Journal Published Year Pages File Type
414201 Robotics and Computer-Integrated Manufacturing 2008 10 Pages PDF
Abstract

The performance of a robot manipulator during a process depends on its position relative to the corresponding path. An ill-placed manipulator risks inefficient operation as well as blocks due to singularities. The paper deals with an optimization algorithm to determine the base position and the joint angles of a spatial robot, when the end-effector poses are prescribed, avoiding the singular configurations. The optimization problem is solved through a hybrid heuristic method that combines the advantages of a genetic algorithm, a quasi-Newton algorithm and a constraints handling method. Six cases of a 6-DOF manipulator are studied to verify the feasibility of the proposed algorithm.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,