Article ID Journal Published Year Pages File Type
415943 Computational Statistics & Data Analysis 2011 11 Pages PDF
Abstract

The recently proposed ‘weighted average least squares’ (WALS) estimator is a Bayesian combination of frequentist estimators. It has been shown that the WALS estimator possesses major advantages over standard Bayesian model averaging (BMA) estimators: the WALS estimator has bounded risk, allows a coherent treatment of ignorance and its computational effort is negligible. However, the sampling properties of the WALS estimator as compared to BMA estimators are heretofore unexamined. The WALS theory is further extended to allow for nonspherical disturbances, and the estimator is illustrated with data from the Hong Kong real estate market. Monte Carlo evidence shows that the WALS estimator performs significantly better than standard BMA and pretest alternatives.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,