Article ID Journal Published Year Pages File Type
421635 Electronic Notes in Theoretical Computer Science 2015 25 Pages PDF
Abstract

In this paper we introduce WMC, a weighted version of the alternation-free modal mu-calculus for weighted transition systems. WMC subsumes previously studied weighted extensions of CTL and resembles previously proposed time-extended versions of the modal mu-calculus. We develop, in addition, a symbolic semantics for WMC and demonstrate that the notion of satisfiability coincides with that of symbolic satisfiability. This central result allows us to prove two major meta-properties of WMC. The first is decidability of satisfiability for WMC. In contrast to the classical modal mu-calculus, WMC does not possess the finite model-property. Nevertheless, the finite model property holds for the symbolic semantics and decidability readily follows; and this contrasts to resembling logics for timed transitions systems for which satisfiability has been shown undecidable. As a second main contribution, we provide a complete axiomatization, which applies to both semantics. The completeness proof is non-standard, since the logic is non-compact, and it involves the notion of symbolic models.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics