Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
427913 | Information Processing Letters | 2010 | 4 Pages |
In a graph G=(V,E), a bisection (X,Y) is a partition of V into sets X and Y such that |X|⩽|Y|⩽|X|+1. The size of (X,Y) is the number of edges between X and Y. In the Max Bisection problem we are given a graph G=(V,E) and are required to find a bisection of maximum size. It is not hard to see that ⌈|E|/2⌉ is a tight lower bound on the maximum size of a bisection of G.We study parameterized complexity of the following parameterized problem called Max Bisection above Tight Lower Bound (Max-Bisec-ATLB): decide whether a graph G=(V,E) has a bisection of size at least ⌈|E|/2⌉+k, where k is the parameter. We show that this parameterized problem has a kernel with O(k2) vertices and O(k3) edges, i.e., every instance of Max-Bisec-ATLB is equivalent to an instance of Max-Bisec-ATLB on a graph with at most O(k2) vertices and O(k3) edges.