Article ID Journal Published Year Pages File Type
433659 Theoretical Computer Science 2016 12 Pages PDF
Abstract

Complex patterns in neuronal networks emerge from the cooperative activity of the participating neurons, synaptic connectivity and network topology. Several neuron types exhibit complex intrinsic dynamics due to the presence of nonlinearities and multiple time scales. In this paper we extend previous work on hyperexcitability of neuronal networks, a hallmark of epileptic brain seizure generation, which results from the net imbalance between excitation and inhibition and the ability of certain neuron types to exhibit abrupt transitions between low and high firing frequency regimes as the levels of recurrent AMPA excitation change. We examine the effect of different topologies and connection delays on the hyperexcitability phenomenon in networks having recurrent synaptic AMPA (fast) excitation (in the absence of synaptic inhibition) and demonstrate the emergence of additional time scales.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , ,