Article ID Journal Published Year Pages File Type
4357407 Fungal Biology 2011 10 Pages PDF
Abstract

Obligate biotrophic pathogens like the rust fungi are important plant pathogens causing enormous losses on food, forage and biomass crops. The analysis of the molecular details underlying obligate biotrophic host–parasite interactions is mainly hampered by the fact that no system for transformation is available for most obligate biotrophic organisms. Here we report the transient transformation of Uromyces fabae, an obligate biotrophic rust fungus using a biolistic approach. Biolistic bombardment of U. fabae urediospores was used to deliver different color markers (β-glucuronidase (GUS), intron green fluorescent protein (iGFP) and red fluorescent protein (DsRed) and/or a selection marker. Endogenous regulatory elements from U. fabae plasma membrane ATPase (Uf-PMA1) were used to drive expression of the transgenes. In addition to the delivery of color markers, an in planta selection procedure using the fungicide Carboxin was established allowing the propagation of transformants. In addition to mere cytoplasmic expression of the color markers, a nuclear localization signal was fused to DsRed (pRV115-NLS) targeting the fluorescent marker protein to the nuclei. A procedure for the genetic modification of U. fabae was established. The method can be easily adapted for use with other obligate biotrophic fungi. This provides the basis for a more in depth analysis of the molecular principles governing the obligate biotrophic lifestyle.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , , ,