Article ID Journal Published Year Pages File Type
4373971 Ecological Indicators 2011 11 Pages PDF
Abstract
The spectral bands most sensitive to salt-stress across diverse plants have not yet been defined; therefore, the predictive ability of previous vegetation indices (VIs) may not be satisfied for salinization monitoring. The hyperspectra of seven typical salt-sensitive/halophyte species and their root-zone soil samples were collected to investigate the relationship between vegetation spectra and soil salinity in the Yellow River Delta (YRD) of China. Several VIs were derived from the recorded hyperspectra and their predictive power for salinity was examined. Next, a univariate linear correlogram as well as multivariate partial least square (PLS) regression was employed to investigate the sensitive bands. VIs examination and band investigation confirmed that the responses of the vegetation differed from species to species, which explained the vibrations of the VIs in many study cases. These differences were primarily between salt-sensitive and halophyte plants, with the former consistently having higher sensitivity than the latter. With the exception of soil adjusted vegetation index (SAVI), most VIs were found to have weak relationships with soil salinity (with average R2 of 0.28) and some were not sensitive to all species [e.g. photochemical reflectance index (PRI) and red edge position (REP)], which verified that most currently available VIs are not adequate indicators of salinity for various species. PLS was validated as a more useful tool than linear correlogram for identification of sensitive bands due to well dealing with multicollinear spectral variables. From PLS, wavelengths at 395-410, 483-507, 632-697, 731-762, 812-868, 884-909, and 918-930 nm were determined to be the most sensitive bands. By combining the most sensitive bands in a SAVI form, we finally proposed four soil adjusted salinity indices (SASIs) for all species. Satisfactory relationships were observed between ECe and four SASIs for all species, with largely improved R2 values ranging from 0.50 to 0.58. Our findings indicate the potential to monitor soil salinity with the hyperspectra of salt-sensitive and halophyte plants.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , , ,