Article ID Journal Published Year Pages File Type
4374076 Ecological Indicators 2011 7 Pages PDF
Abstract

One of the promising approaches to monitoring biodiversity is assessing the status of pressures driving the biodiversity state. To achieve this, we need to identify the principal pressures that cause simultaneous biodiversity loss across taxonomic groups and clarify how multiple pressures act synergistically or at least simultaneously to decrease biodiversity in the focal ecosystem. Here, we used a series of 64 ponds as a case study and we developed a framework for an integrated biodiversity indicator that took into consideration the estimated relative importance of multiple pressures. The indicator is defined as a function of the pressure(s) and is parameterized to explain a number of individual indicators of biodiversity, such as richness, abundance, and functional diversity of focal taxa. We selected aquatic macrophytes, Odonata, and benthic macroinvertebrates as the focal taxa. In addition, we focused on three types of pressure: eutrophication (represented by total phosphorus, total nitrogen, suspended solids, chlorophyll a, and density of cyanobacteria of pond water), habitat destruction (land-use type around the pond and pond bank protection), and invasive alien species (abundance of bluegill, largemouth bass, red swamp crayfish, and American bullfrog). We then evaluated the relationships among direct pressures and the individual biodiversity indicators and used a hierarchical Bayesian approach to calculate the integrated biodiversity indicator. Using this framework, we demonstrated that eutrophication had greater effects on the state of biodiversity of the agricultural ponds than did habitat destruction or the presence of invasive alien species. We also showed that the integrated indicator could well explain the behaviors of several individual biodiversity indicators, including total richness, endangered species richness, and functional diversity of focal taxa. These results demonstrate the advantages of the framework in providing a more practical method for assessing biodiversity, and quantifying the relative importance of the major threats to biodiversity to prioritize strategies in conservation planning and policy making.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , ,