Article ID Journal Published Year Pages File Type
4375658 Ecological Modelling 2015 10 Pages PDF
Abstract

•We develop a spatially explicit model of a potentially invasive biofuel crop.•Landscape characteristics and invader traits influence patterns of spread.•Incorporating biotic resistance reduces spread rates from previous estimates.•The effect of landscape spatial structure is largely seen in transient dynamics.•Spatially explicit models can play important roles in agricultural decision-making.

The introduction and spread of potentially invasive species present profound ecological challenges with major consequences for natural and cultivated ecosystems. The spread of invasive species is driven by both invader traits and the landscapes they are colonizing and there is a pressing need for objective and quantitative methods that integrate landscape details into predictions of biological invasions. Here we develop a new spatially explicit integro-difference equation model to predict the spread of invasive species over real landscapes. We use this model to evaluate the spread of a potentially invasive biomass crop, namely a fertile variety of Miscanthus giganteus, as a case study of how such models can be used to aid decision making when managing agricultural landscapes. We show that M. giganteus has the ability to invade large landscapes, but the rate and extent of that spread is strongly dependent on the landscape, including composition, spatial structure and the presence of dispersal corridors. Lastly, we discuss the potential application and value of spatial models in risk analysis and management of novel agricultural production systems that include potentially invasive crops.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , ,