Article ID Journal Published Year Pages File Type
4377026 Ecological Modelling 2011 10 Pages PDF
Abstract
We generated a mass-balance model to figure out the food web structure and trophic interactions of the major functional groups of the Ethiopian highland Lake Hayq. Moreover, the study lay down a baseline data for future ecosystem-based investigations and management activities. Extensive data collection has been taken place between October 2007 and May 2009. Ecotrophic efficiency (EE) of several functional groups including phytoplankton (0.8) and detritus (0.85) was high indicating the utilization of the groups within the system. However, the EE of Mesocyclops (0.03) and Thermocyclops (0.30) was very low implying these resources were rather a 'sink' in the trophic hierarchy. Flows based on aggregated trophic level sensu Lindeman revealed the importance of both phytoplankton and detritus to higher trophic levels. The computed average transfer efficiency of 11.5% for the first four trophic levels was within the range for highly efficient African lakes. The primary production to respiration (P/R) ratio (1.05) of Lake Hayq indicates the maturity of the ecosystem. We also modeled the food-web by excluding Tilapia and reduced phytoplankton biomass to get insight into the mass balance before Tilapia was introduced. The analysis resulted in a lower system omnivory index (SOI = 0.016) and a reduced P/R ratio (0.13) that described the lake as immature ecosystem, suggesting the introduction of Tilapia might have contributed to the maturity of the lake. Tilapia in Lake Hayq filled an ecological empty niche of pelagic planktivores, and contributed for the better transfer efficiency observed from primary production to fish yield.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , ,