Article ID Journal Published Year Pages File Type
4377119 Ecological Modelling 2011 7 Pages PDF
Abstract

Lake eutrophication leading to water pollution is a major global concern. In recent years, rapid economic growth and the increase in the intensity of resource exploitation in China have caused the influx of nitrogen and phosphorus into lakes. This in turn has led to more severe lake eutrophication, more frequent outbreaks of algal blooms, and the degradation of lake ecosystems. An effective plan balancing economic growth with the reduction of nitrogen and phosphorus emissions is greatly needed. The design and implementation of such a plan requires the collection and analysis of pertinent data. In this paper, we use the environmental computable general equilibrium (ECGE) model to identify the most effective way to balance economic growth with the reduction of nitrogen and phosphorus emissions. For the multiregional analysis, we use social accounting matrices (SAMs) and a provincial trade matrix based on the assumptions of the gravity model. We consider the Poyang Lake Watershed as a case study to illustrate the utility of the model. Based on present conditions in the Poyang Lake Watershed, restricting nitrogen and phosphorus emissions from sectors with the highest emissions is more effective for balancing economic growth and the reduction of nitrogen and phosphorus emissions than restricting nitrogen and phosphorus emissions from all sectors.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , ,