Article ID Journal Published Year Pages File Type
4377442 Ecological Modelling 2010 12 Pages PDF
Abstract

The dynamics that govern the elevation of a coastal wetland relative to sea level are complex, involving non-linear feedbacks among opposing processes. Changes in the balance between these processes can result in significant alterations to vegetation communities that are adapted to a specific range of water levels. Given that current sedimentation rates in Padilla Bay, Washington are likely less than historical levels and that eustatic sea level rise is accelerating, the extensive Zostera marina (eelgrass) meadows in the bay may be at risk of eventual submergence. We developed a spatially explicit relative elevation model and used it to project changes in the productivity and distribution of eelgrass in Padilla Bay over the next century. The model is mechanistic and incorporates many of the processes and feedbacks that govern coastal wetland elevation change. Accretion estimates made using 210Pb dating of sediment cores, sediment characteristics measured within cores, and eelgrass productivity and decomposition data were used to initialize and calibrate the model. Validation was performed using an elevation change rate measured with a network of surface elevation tables. Both the field data and model simulations revealed a net accretion deficit for the bay. Simulations using current rates of sea level rise indicated an overall expansion of eelgrass within Padilla Bay over the next century as it migrates from the center of the bay shoreward.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, ,