Article ID Journal Published Year Pages File Type
4377642 Ecological Modelling 2009 12 Pages PDF
Abstract

The Mediterranean Sea hosts 5.6% of the world benthic invertebrate species on 0.82% of the ocean surface. Mediterranean ecosystems are also characterized by low densities (and biomasses) compared to other oceanic ecosystems, a feature often attributed to their oligotrophic environment. Oligotrophic conditions can induce lower growth rates and higher mortality rates, and a stronger competition for food between individuals. A theoretical model was developed in order to study the diversity vs. density patterns in coastal benthic invertebrate species. This model describes their minimal population dynamics including basic processes (growth, mortality, reproduction and effects of competitive interactions between individuals) and incorporating fluxes of larvae (finally recruited as juveniles) between a mosaic of local habitats. Populations are therefore structured in a metacommunity. The connectivity between local communities is ensured by passive pelagic larval dispersal. In the Mediterranean Sea, because of the microtidal regime, the connectivity between coastal habitats is lower and more variable than in macrotidal basins. Mathematical properties of the model revealed that competitive interactions (intra- and interspecific competitions) have a stabilizing effect on interacting organisms when gains by recruitment are higher than losses by mortality. In addition, low mortality rates and low connectivity which decreases negative local interactions maintains high regional species diversity with low local densities. This property suggested that oligotrophy cannot be the only factor leading to the high diversity–low density pattern observed in the Mediterranean Sea.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , ,