Article ID Journal Published Year Pages File Type
4377887 Ecological Modelling 2008 11 Pages PDF
Abstract

Phytoplankton concentration in Lake Kinneret (Israel) has varied up to 10-fold in space and time, with horizontal patches ranging from a couple of kilometres to a basin scale. Previous studies have used a 1D model to reproduce the temporal evolution of physical and biogeochemical variables in this lake. The question that arises then is how appropriate is a 1D approach to represent the dynamic of a spatially heterogeneous system, where there are non-linear dependencies between variables. Field data, a N-P-Z model coupled to both a 1D and a 3D hydrodynamic model, a 1D diffusion-reaction equation and scaling analysis are used to understand the role of spatial variability, expressed as phytoplankton patchiness, in the modelling of primary production. The analysis and results are used to investigate the effect of horizontal variability in the forcing and in the free mechanisms that affect the growth of patterns. The study shows that the use of averaged properties in a 1D approach may produce misleading results in the presence of localised patches, in terms of both concentration and composition of phytoplankton. The reason lies in the fact that the calibration process of ecological parameters in the 1D model appears to be site and process specific. That is, it depends on the pattern's characteristics and the underlying physical processes causing them. And this is a critical point for the success of numerical simulations under spatial variability. In this study, it is also shown that a length scale based on diffusion and growth rate of phytoplankton could be used as a criterion to assess the appropriateness of the 1D assumption.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , ,