Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4378215 | Ecological Modelling | 2008 | 8 Pages |
Abstract
The tunneling structure of the Formosan subterranean termite, Coptotermes formosanus Shiraki, was simulated using a lattice model in order to explore a foraging strategy that optimizes food encounter rate. A tunnel was mimicked by algorithms derived from experimental data that determined the movement of a discrete unit of excavation performed by a cadre of termite workers, the tunnel vector cell (TVC). To be consistent with real tunneling behavior, tunnel propagation was terminated when TVCs did not encounter food particles within a given threshold length L1 (primary tunnel) and L2 (secondary tunnel). The simulations revealed that the length ratio between primary and secondary tunnels, γ (=L2/L1), produced a bimodal distribution of food encounter rates. The encounter rate was optimized at two values of γ because of either a searching distance effect (SDE), characterized by long primary tunnels with short branches, or a searching area effect (SAE), that balances tunnel length with branch length to cover a broad area. These two strategies reflect tunnel geometries that subterranean termites may employ in excavating tunnel patterns that optimize the rate of encountering food sources.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Ecology, Evolution, Behavior and Systematics
Authors
S.-H. Lee, P. Bardunias, N.-Y. Su,