Article ID Journal Published Year Pages File Type
4379987 Acta Ecologica Sinica 2014 8 Pages PDF
Abstract

China’s Yellow River Delta is ecologically important because of its role as an eco-tone between terrestrial and aquatic ecosystems. However, water stress caused by drought or flooding creates ecological risks for this important ecosystem. In this study, we assessed community biodiversity, plant biomass, and the plant total nitrogen, total phosphorus, and potassium contents to quantify the potential loss of ecosystem services value arising from water stress. The annual ecosystem services and function value of the wetlands totaled 3.68 × 108 Yuan, of which biomass production and local climate regulation accounted for 39.4% and 49.5% of the total, respectively. The area with the highest value (>2 Yuan m−2) lies along both banks of the downstream reaches of the river, whereas areas with the lowest values (<1.5 Yuan m−2) were located on the northern bank, near the Bohai Sea coastline. We defined scenarios based on three levels of water stress: drought, sufficient water, and flooding. The potential annual value loss in the drought scenario was 3.60 × 108 Yuan, versus 2.78 × 108 Yuan in the flooding scenario. The minimum loss (with sufficient water) was 2.06 × 108 Yuan. The wetland’s soil water content should therefore be managed to protect the vegetation and minimize the ecological risks (and associated ecosystem service value losses) caused by water stress. Our approach provides a tool for assessing the potential loss of ecosystem services and functions and for calculating ecological compensation payments for wetland damage.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , ,