Article ID Journal Published Year Pages File Type
4380119 Acta Ecologica Sinica 2010 6 Pages PDF
Abstract

The Vegetation Photosynthesis Model (VPM) was used to simulate the gross primary productivities (GPP) of the alpine meadow ecosystem in the northern Tibet Plateau at three different spatial resolutions of 0.5 km, 1.5 km and 2.5 km, respectively. The linear relationships between enhanced vegetation indices (EVI) and GPP, with higher correlative coefficients, were better than those between normalized difference vegetation indices (NDVI) and GPP at the three resolutions. VPM could well simulate the seasonal changes and inter-annual variations of GPP, with similar trends at the three resolutions. There were significant differences (P < 0.0001) among the three modeled GPP with the three resolutions. Therefore, the modeled GPP at high resolution could not be directly extrapolated to low resolution, and vice versa. The contribution levels of different model parameters, including photosynthetically active radiation (PAR), air temperature (Ta), NDVI, EVI and land surface water indices (LSWI), to modeled GPP could vary with spatial resolution based on multiple stepwise linear regression analysis. This indicated that it was important to choose parameters properly and consider their effects on modeled GPP.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , ,