Article ID Journal Published Year Pages File Type
4380197 Acta Ecologica Sinica 2009 8 Pages PDF
Abstract

To restore the human-disturbed natural ecology and to assess the impact of the projected future climatic change on the natural ecology at a plant community level or at a plant species level, we need to understand the potential distribution of the community or the species under current climate conditions. Many methods have recently been developed to simulate the potential distribution of a particular community or a particular species, but very little has been done to assess the potential distribution of Qinghai spruce (Picea crassifolia) in Qilian Mountains where the spruce forests are extremely important ecologically and hydrologically. This study used maximum entropy model to simulate the potential distribution of Qinghai spruce under current climate conditions and the validity of the model was verified by statistically comparing the simulated potential distribution with the observed actual distribution of the spruce. We then applied this verified model to assess the impact of the projected future climatic changes on the spruce and the simulated results show that the areal extent of the potential distribution of Qinghai spruce may increase by 1% under the projected future climate change scenario. In addition, this study revealed that among the 19 environmental and climatic factors used in this model, the most important factors are the mean maximum temperature in the warmest month and the mean temperature of the wettest quarter in controlling the potential distribution of Qinghai spruce, these two factors accounting for as much as 75.6% of the variations.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , ,