Article ID Journal Published Year Pages File Type
4382045 Applied Soil Ecology 2015 8 Pages PDF
Abstract

•CO2 and N2O emissions from ant mound soils were higher than from the natural soils.•Mound soil is a potential source of ‘hot spots’ for CO2 and N2O flux from ant mound.•High gas efflux from mound soils were induced by increases in soil C and N content.•Gas emissions from mound soils varied by ant species.

As ecosystem engineers, ants can mediate soil processes and functions by producing biogenic structures. In their mounds, ants not only directly produce CO2 by respiration, but may also indirectly impact soil greenhouse gas emissions by affecting substrate availability and soil physicochemical characteristics. Recent studies focused on overall gas production from ant mounds. However, little is known about mound material respiration and N2O emissions in ant mounds in wetlands. We measured CO2 and N2O emissions from mound soils of three different ant species (Lasius niger Linnaeus, Lasius flavus Fabricius, and Formica candida Smith) and natural marsh soils in a laboratory incubation experiment. On the whole, average soil CO2 and N2O emission rates from ant mounds were significantly higher than from the natural marsh soils. Over the 64 days incubation, the cumulative soil CO2 and N2O production from ant mounds was, respectively, 1.5–3.0 and 1.9–50.2 times higher than from the natural soils. Soil gas emissions from ant mounds were significantly influenced by the specific ant species, with soil CO2 and N2O emissions from L. niger mounds being higher than those from F. candida or L. flavus mound soils. Cumulative CO2 and N2O emissions from ant mound soils were positively correlated with soil clay, total carbon, dissolved organic carbon, total nitrogen and NH4+ content. Our laboratory results indicated that mound soil is an important source of CO2 and N2O emission from ant mounds in marshes, making mounds potential “hot spots” for CO2 and N2O emissions. Ants may increase the spatial heterogeneity of soil gas emissions by changing mound soil physicochemical properties, especially carbon and nutrition content, and soil texture. Contributions from ant mound materials should be considered when describing soil C and N cycles and their driving factors in wetland ecosystems.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , ,