Article ID Journal Published Year Pages File Type
4382369 Applied Soil Ecology 2014 8 Pages PDF
Abstract

•Fungal contribution to soil N2O production was examined in diverse ecosystems.•Fungi contributed to soil N2O flux more than bacteria in the plantation forest.•Equal contributions were made by fungi and bacteria in herbaceous-dominant ecosystems•Soil pH was negatively related to the fungal-to-bacterial contribution ratio.

Sporadic observations from pure culture study and direct soil measurement have indicated that fungi can substantially contribute to soil N2O production. Yet, it is still uncertain whether this fungal significance is a more general ecological phenomenon. In this study, relative contributions of fungi and bacteria to soil N2O production were examined in five ecosystems, including conventional farming (CON), integrated crop and livestock system (ICL), organic farming (ORG), plantation forestry (PF), and abandoned agriculture field subjected to natural succession (SUCC). Soil N2O production was measured at 90% water-filled pore space from antibiotic-free controls and soils amended with streptomycin, cycloheximide, or both. Streptomycin and cycloheximide additions significantly reduced soil N2O fluxes from the five systems, ranging from 31% to 54% and 40% to 51%, respectively. Fungi contributed more to soil N2O fluxes than bacteria in PF, whereas fungi and bacteria made comparable contributions in other four systems. Furthermore, soil pH was correlated positively with the percentage of bacterial contribution to soil N2O flux, but negatively with the percentage of fungal contribution to soil N2O flux as well as the ratio of fungal-to-bacterial contributions. Our results showed that fungi could potentially contribute to soil N2O production in diverse agroecosystems and their contribution might be more pronounced in the acidic plantation forestry.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , ,