Article ID Journal Published Year Pages File Type
4382430 Applied Soil Ecology 2013 7 Pages PDF
Abstract

In the state of Tabasco, South-eastern, Mexico, land-use changes such as the conversion of natural into agricultural systems, modify soil quality and the abundance of soil macrofauna, including earthworms. The aim of this study was to characterize by near-infrared spectroscopy (NIRS) the earthworms’ fingerprint in soil, in six sites including natural and agricultural ecosystems with low and high earthworm biomass and low and high earthworm diversity, in order to identify specific wavelengths that discriminate the presence/abundance of earthworm species and functional groups. The spectral region of 1860–1870 nm was significantly correlated with total earthworm density, particularly at one of the sites (Cedar polyculture; r = 0.8, p < 0.05). Earthworm biomass had a specific NIRS wavelength according to the earthworm species and feeding category: 1820 and1860–1870 nm wavelengths were significantly correlated with Polypheretima elongata (r2 = 0.7, p < 0.05; mesohumic species) biomass and 2090 nm for biomass of all Lavellodrilus species (polyhumics). Two species had a much wider spectral range: L. bonampakensis and Dichogaster saliens (an epigeic worm; 1690–2300 nm, r2 = 0.7, p < 0.05). Biomasses of Periscolex brachysistis and Diplotrema murchiei were not significantly correlated with any near infrared wavelength spectra analyzed. Combining a maximum of 4 species per wavelength, mesohumic earthworms had a wider wavelength spectrum than polyhumics. Therefore, earthworm species diversity, biomass and abundance are associated with soil quality (as measured by NIR spectra) and this relationship varies with species and ecological category. Sites with lower and higher earthworm diversity have lower and higher soil organic matter quality, respectively, as observed by the wider or narrower spectral range with which earthworm biomasses are correlated.

► NIRS wavelengths were measured in soils with high and low earthworm biomass. ► 1860–1870 nm wavelengths were significantly correlated with earthworm density. ► 2090 nm wavelength was significantly correlated with biomass of Lavellodrilus species. ► Earthworm species and functional groups have specific NIRS spectra. ► Lower earthworm diversity is associated with narrower NIRS spectra and lower SOM quality.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , ,