Article ID Journal Published Year Pages File Type
4387187 Biological Conservation 2007 10 Pages PDF
Abstract

Although conservation and restoration practitioners have focused on maximizing aboveground population size and seed set of rare plants, a clear understanding of seed bank dynamics is crucial to managing these species. Santa Cruz tarplant (Holocarpha macradenia) is a threatened annual forb restricted to coastal prairie habitats in central California. Holocarpha produces disk achenes germinating within a year of production and ray achenes forming a persistent seed bank. We constructed both deterministic and stochastic demographic models for a restored Holocarpha population, using demographic rates measured separately for unmanipulated plants and plants growing in plots where vegetation was clipped. The deterministic models indicated that regardless of germination from the seed bank, the population would decline without clipping or similar treatments that enhance survival and reproductive output. Deterministic models showed only a slight positive effect of increased ray seed germination rates on population growth, which would need to be balanced against a potential loss of buffering against environmental variation as the dormant seed bank was reduced. Our stochastic simulations suggested that extinction risk for Holocarpha populations would be minimized by intermediate levels of ray seed germination. Thus, managers should focus on improving the performance of aboveground plants before considering actions to stimulate germination, since the former will yield a greater increase in deterministic population growth and not sacrifice any buffering effect of the seed bank. This case study emphasizes the importance of considering dormant seeds and seed banks in designing successful restoration and management strategies for plant species at risk of extinction.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , ,