Article ID Journal Published Year Pages File Type
4390290 Ecological Engineering 2011 5 Pages PDF
Abstract
Wetlands have proven effective at improving water quality of treated wastewater effluent, which in turn promotes increased primary productivity and vertical accretion. Baldcypress (Taxodium distichum) seedlings grown under different conditions (bare root and potted) were planted in four subunits of an effluent assimilation marsh and a control marsh in southeast Louisiana, USA, and basal diameter growth was monitored over one growing season. Mean basal diameter growth for seedlings in the assimilation subunits ranged from 16.1 (±1.4) mm to 9.5 (±0.9) mm, whereas growth for seedlings planted in the control marsh was 6.4 (±0.9) mm. Seedlings planted nearest the outfall experienced greater basal diameter growth (18.1 ± 2.6) compared to those planted 700 m away (8.0 ± 0.9), with growth generally decreasing with distance. Potted seedlings experienced greater growth (19.1 ± 1.0 and 20.6 ± 1.0 for five-month-olds and ten-month olds, respectively) than bare root seedlings (4.6 ± 0.6 and 4.0 ± 0.4 for one-year-olds and two-year olds, respectively). Planting assimilation marshes with baldcypress seedlings can be an effective restoration tool for coastal Louisiana, which will provide hurricane protection and improved surface water quality. Wastewater treatment wetlands may offer an effective tool for restoring coastal baldcypress (T. distichum)-water tupelo (Nyssa aquatic) swamps in Louisiana.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , ,