Article ID Journal Published Year Pages File Type
4390755 Ecological Engineering 2010 7 Pages PDF
Abstract

Recent advances in peatland restoration techniques have succeeded in establishing Sphagnum moss on the remnant cutover peat surface following peat extraction; however, evaluating restoration success remains a key issue. We argue that a Sphagnum-dominated peatland can only be considered functionally ‘restored’ once organic matter accumulation has achieved a thickness where the mean water table position in a drought year does not extend into the underlying formerly cutover peat surface. Here we monitor the spatio-temporal development of organic matter accumulation in a new peat layer for the first 8 years following the restoration of a Québec peatland and couple a simple acrotelm carbon accumulation model and ecohydrological model to assess peatland restoration success.We determined that organic matter accumulation increased from 2.3 ± 1.7 cm 4 years post-restoration to 13.6 ± 6.5 cm 8 years post-restoration. For comparison, at an adjacent non-restored section of the peatland organic matter accumulation was significantly lower (p < 0.001 for all years), with mean thicknesses of 0.2 ± 0.6 and 0.8 ± 1.2 cm for 24 and 28 years post-extraction, respectively. Given the mean summer water deficit at the site (−64 mm), our ecohydrological modeling results suggest that a 19-cm-thick moss layer would be required to offset the water table decrease induced by the summer water deficit. Given the current rate of organic matter accumulation, net primary productivity and the new peat layer decomposition rates determined using litter bags, we estimate it will take 17 years post-restoration to accumulate a 19-cm moss layer. Consequently, we argue that successful peatland restoration may be achieved in the medium-term and that our simple modeling approach can be useful in assessing the long-term impact of restoration on atmospheric carbon dioxide sequestration.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , ,