Article ID Journal Published Year Pages File Type
4390896 Ecological Engineering 2009 7 Pages PDF
Abstract

Rising concentrations of tropospheric ozone are having detrimental impacts on the growth of crop and forest species and some studies have reported inhibition of the allocation of carbon below ground. The effects of ozone on peatland ecosystems have received relatively little attention, despite their importance within the global carbon cycle. During this study, cores from a Welsh minerotrophic fen and ombrotrophic bog were exposed to four ambient/elevated ozone concentration regimes representing current and predicted 2050 profiles. A large and significant reduction in the concentration of porewater dissolved organic carbon (DOC) was recorded in the fen cores exposed to the elevated ozone concentrations (up to −55%), with a concurrent shift to a higher molecular weight of the remaining soil carbon. No effects of ozone on DOC concentrations or characteristics were recorded for the bog cores. The data suggest higher ozone sensitivity of plants growing in the fen-type peatland, that the impacts on the vegetation may affect soil carbon characteristics through a reduction in root exudates and that there may have been a shift in the source of substrate DOC for microbial consumption from vegetation exudates to native soil carbon. There may also have been a direct effect of ozone molecules reacting with soil organic matter after being transported into the soil through the aerenchyma tissue of the overlying vegetation. These qualitative changes in the soil carbon in response to elevated ozone may have important implications for carbon cycling in peatland ecosystems, and therefore climate change.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , ,