Article ID Journal Published Year Pages File Type
4391235 Ecological Engineering 2006 21 Pages PDF
Abstract

The South Florida Water Management District has constructed large treatment wetlands (stormwater treatment areas (STAs)) to reduce total phosphorus concentrations in agricultural runoff before this water enters the Everglades. An important component of nutrient removal and storage in these systems is incorporation of nutrients into aquatic macrophytes and burial of this biomass in the sediments. However, decomposition of plant biomass before burial returns nutrients to the water column and may reduce STA treatment efficiency. As part of research on biogeochemical control of STA performance, we conducted a summer (July–September) and a long-term (12-month) experiment (February–February) that measured decomposition rates and release of chemical constituents from dominant aquatic macrophytes in a constructed wetland located in south Florida. The rank order of mean decomposition rates was Najas/Ceratophyllum (0.0568 d−1) > Pistia (0.0508 d−1) > Eichhornia (0.0191 d−1) > submerged Typha (0.0059 d−1) > aerial Typha (0.0008 d−1). Summer decomposition rates were generally higher than rates from the long-term experiment, which suggested a temperature effect. Decomposition rates were negatively correlated with litter C:N and C:P molar ratios and cellulose and lignin content and positively correlated with N and P content. There was no significant difference in decomposition rates among sampling stations despite the fact that there was a decreasing gradient in water column inorganic phosphorus and nitrogen concentrations at these sites. Relatively little of the initial P mass remained in the litter of all species, except Typha, by the end of both experiments. First-order decomposition models derived using nonlinear regression generally had explanatory power, i.e. accounted for variance, comparable to more complex decreasing-coefficient models. Decomposition rates for the species examined in this study were within the range of published values when comparisons were made either by species or by plant group.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, ,