| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 4391287 | Ecological Engineering | 2007 | 9 Pages |
Abstract
Filtralite P® and shellsand as ideal constructed wetland substrates have been tested for their P sorption capacity, both with batch and column experiments. Two columns were filled with Filtralite P® and one column with shellsand. The shellsand (SSPS) and one of the Filtralite P® columns (FLSP) were loaded with a synthetic P solution, while the second Filtralite P® column (FLWW) was loaded with secondary wastewater. Ca, Mg, pH, and the P concentrations were measured in the inlet and the seven outlets along the height of the three vertical upflow columns for up to 303 days. An overall P removal rate of 92, 91, and 54% was measured in the columns SSPS, FLWW, and FLPS, respectively, for the entire experimental period. The comparison of FLWW and FLPS showed that FLWW kept its high P removal efficiency (91%) throughout the experimental period while the removal efficiency of FLPS decreased fast after reaching the 1Â ppm effluent P concentration. The competition of other negative ions and the development of biofilm did not have a negative effect on P removal from wastewater. The batch experiments showed a better sorption capacity of Filtralite P® at low initial concentrations, while for high initial concentrations the shellsand sorbed more. Shellsand had, however, a higher sorption capacity in batch experiments with used column material and high initial P concentrations. The results from both the batch and the column experiment suggest that the shellsand has a more durable P sorption capacity than the Filtralite P® material, possibly due to the persistent high concentrations of Ca in the shellsand.
Keywords
Related Topics
Life Sciences
Agricultural and Biological Sciences
Ecology, Evolution, Behavior and Systematics
Authors
Kinga Ádám, Tore Krogstad, Lasse VrÃ¥le, Anne Kristine Søvik, Petter D. Jenssen,
