Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4392118 | European Journal of Soil Biology | 2010 | 9 Pages |
Abstract
Management of soil ecosystems requires assessment of key soil physicochemical and microbial properties and the spatial scale over which they operate. The objectives were to determine the spatial structure of microbial biomass and activity and related soil properties, and to identify spatial relationships of these properties in prairie soils under different management histories. Soil were sampled along a transect at 0.2Â m intervals in each of five long-term treatments, namely, undisturbed, cattle grazed at two intensities, and cultivated with either wheat (Triticum aestivum L.) or cotton (Gossypium hirsutum L.). Contents of organic carbon (Corg), dissolved organic C (DOC), soluble nitrogen (Nsol), and microbial biomass C (Cmic) and N (Nmic) as well as dehydrogenase activity (DH) in 70 samples were evaluated. Results showed that long-term soil management altered the spatial structure and dependence of Corg and microbial biomass and activity. Cultivation has contributed to high nugget variance for Corg, Cmic, Nmic and DH which interfered with detection of spatial structure at the sampling scale used. Contents of Corg were spatially connected to microbial biomass and activity and to DOC in the uncultivated but not in the cultivated soils, indicating that various factors affected by management may operate at different spatial scales.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Soil Science
Authors
Eirini Katsalirou, Shiping Deng, David L. Nofziger, Argyrios Gerakis, Samuel D. Fuhlendorf,