Article ID Journal Published Year Pages File Type
4395222 Journal of Experimental Marine Biology and Ecology 2016 8 Pages PDF
Abstract

•This cost-effective video lander was suitable for sampling known fish species.•Baiting the video lander did not impact sampling efficiency or fish community.•8 min drop duration is optimal for observing max species richness and abundances.•This drop duration doubles previously described drop durations in Oregon waters.

Rocky reefs in the temperate Northeast Pacific constitute a small portion of the nearshore seabed, yet are highly valued as productive habitat for local fisheries. Surveying these structurally complex, untrawlable habitats requires robust gear that can be deployed in rough sea states. Here, a cost-effective, compact video lander was evaluated for its ability to survey the diversity and abundance of nearshore (< 40 m), rocky-reef-associated fish populations (e.g. Sebastes, Cottidae, Hexagrammidae). To determine the application and limitations of surveying complex rocky reefs with this new tool, this study sought to (1) determine the frequency of observation of known nearshore fish species, (2) evaluate the influence of baiting the lander on the observed fish assemblage, (3) identify the optimal deployment time to maximize observed species richness and abundance, and (4) evaluate species-specific behavioral responses to the lander characterized a priori as attractive, avoidance, or neutral. Seventy percent of lander deployments met established requirements of visibility, view, and habitat. Seventy-seven percent of observed fishes were identifiable to species. The method observed 15 species belonging to 5 families; 5 species were classified as common (observed in > 20% of deployments), the remaining rare. Contrary to lander studies in other regions, bait was not found to improve species-specific identification, increase observed species richness or abundance (at the species or feeding guild level), or shorten deployment duration. A deployment time of 8 min on the benthos was determined as optimal for observing maximum species richness and abundance in the nearshore, doubling the previously described lander drop durations evaluated in deeper Oregon, U.S.A., waters. Species-specific behavioral responses to this compact lander were evaluated by viewing trends in species abundance (assessed within 30 s bins) over the deployment duration; no attractive or avoidance behaviors were observed. Results confirm that this simple, cost-effective video lander configuration is suitable for sampling the suite of fish species found in the nearshore, including rockfish species federally designated as “overfished” (Sebastes pinniger and Sebastes ruberrimus). Furthermore, this study illustrates the importance of evaluating the performance of survey tools in the specific environment in which the tool will be used to determine best-practices from long-term monitoring.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, ,