Article ID Journal Published Year Pages File Type
4396821 Journal of Experimental Marine Biology and Ecology 2010 10 Pages PDF
Abstract

Prior to the spring bloom in 2003 and 2004, batch temperature experiments of approximately 3 weeks' duration were carried out in land-based mesocosms in at the Espeland field station (Norway), with temperatures on average increased ~ 2.7–3 °C (T1) and ~ 5.2–5.6 °C (T2) above in situ fjord temperature (RM). The development in the chlorophyll concentrations showed an earlier bloom as a response to increased temperatures but the carbon biomass showed that the warmest treatment yielded the lowest biomass. This study indicates that a part of the relationship between temperature and spring bloom timing stems from a temperature-induced change in phytoplankton algal physiology (the efficiency of photosystem II, Fv/Fm, and growth rates, µmax), i.e. a direct temperature effect. Data analysis performed on microscope identified and quantified species did not show a significant temperature influence on phytoplankton community composition. However, the HPLC data indicated that temperature changes of as little as 3 °C influence the community composition. In particular, these data showed that peridinin-containing dinoflagellates only increased in abundance in the heated mesocosms and that a prasinophycean bloom, which was undetected in the microscope analyses, occurred prior to the blooms of all other phytoplankton classes in all treatments. The microscope analyses did reveal a temperature effect on individual species distribution patterns. Thalassionema nitzschioides was more abundant in the warm treatments and, in the warmest treatment, the spring bloom forming Skeletonema marinoi comprised a smaller proportion of the diatom community than in the other treatments.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , , , ,