Article ID Journal Published Year Pages File Type
4397493 Journal of Experimental Marine Biology and Ecology 2007 10 Pages PDF
Abstract

The mud crab Scylla serrata is an important commercial crustacean inhabiting estuarine water along the coast of southeast China. Metabolism in the gill is affected continuously by fluctuating water temperature and, therefore, the ability to cope with temperature change is essential to maintain physiological function. This experiment was conducted to help understand the mechanism of low temperature adaptation in S. serrata gill. In this study, 40 healthy juvenile male S. serrata from the same broodstock were grouped randomly into four groups, which were kept at 5 °C, 10 °C, 15 °C and 27 °C, with the same feeding regime during a 3-week adaptation period. Two-dimensional electrophoresis of the proteome was conducted to separate the specific proteins responsible for low temperature adaptation. Variations in the mitochondria were observed using transmission electron microscopy, and fatty acid composition was determined using gas chromatography. The results showed that different numbers of specific proteins were expressed under different low temperature adaptation, with more expressed at 5 °C and 10 °C than at 15 °C. Mitochondrial morphology also varied under different low temperature adaptation, but there was no linear relationship between microbial density and adaptation temperature. The composition of different fatty acids in the gill varied considerably with adaptation temperature, but elongation of the carbon chain and transition from fatty acids occurred at lower temperatures. Thus, changes in the specific proteins, mitochondria and fatty acid composition of the gill were the positive effects of low temperature on metabolism, leading to improved adaptation ability in S. serrata.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , , ,