Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4397568 | Journal of Experimental Marine Biology and Ecology | 2008 | 12 Pages |
The black abalone (Haliotis cracherodii) has been severely depleted across much of its historic range by a combination of overexploitation and disease. Natural recovery of extirpated populations along the southern California coast will depend on the extent to which remnant populations can serve as larval sources to geographic locations formerly supporting abalone populations. Population genetic analyses of mitochondrial cytochrome oxidase subunit one (COI) DNA sequences, four nuclear microsatellites, and 142 amplified fragment length polymorphisms (AFLPs) were used to evaluate connectivity among populations of H. cracherodii sampled from the central California coast and four islands in the Southern California Bight. Global divergence among populations was significant at COI and the AFLP loci. The Hka28 microsatellite locus and AFLP data showed significant divergence in multiple pairwise population comparisons and exhibited a signal of isolation by distance. Although estimates of gene flow based on genetic analyses must be interpreted with caution, the observed level of interpopulation genetic divergence suggests that larval dispersal is restricted, and natural recovery of decimated H. cracherodii populations along the coast of California is unlikely to occur in the near future.