Article ID Journal Published Year Pages File Type
4397576 Journal of Experimental Marine Biology and Ecology 2008 8 Pages PDF
Abstract

Large areas of the Baltic Sea bottoms suffer from low oxygen conditions and anoxia, impoverishing the benthic macrofauna. The important macrofaunal function bioturbation, which improves the transport of oxygen into the sediment does not occur in an absence of benthic macrofauna. The objective of this study was to investigate if a semi-pelagic species, like the mysid crustacean Mysis relicta, is able to improve the oxygen conditions of the sediment and thereby acts as a facilitator for re-colonization of azoic sediments by benthic species. We also wanted to study the potential of M. relicta in breaking the diffusive boundary layer under varying degrees of oxygen deficiency. Three types of sediment qualities were used to mimic the severity of oxygen deficiency. Under normoxia, moderate hypoxia (40% O2) and hypoxia, (20% O2) M. relicta's bioturbation activity was studied by recording oxygen profiles in sediments with and without mysids. In normoxia the mysids were able to oxygenize the sediment independent of sediment quality. The results show that mysids are able to bioturbate the sediment to some extent in hypoxia independent of the sediment quality. In all treatments with mysids the diffusive boundary layer was more or less completely broken down. In normoxia treatment with sediment of very low quality the mysids prevented growth of the sulphur bacteria Beggiatoa spp. which usually occurs on anoxic bottoms. The ability of this semi-pelagic species to improve benthic oxygen conditions can be seen as an important first step in re-colonization by real benthic species.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, ,