Article ID Journal Published Year Pages File Type
4397714 Journal of Experimental Marine Biology and Ecology 2007 13 Pages PDF
Abstract

The understorey beneath a canopy of the kelp Ecklonia radiata often contains juvenile sporophytes of the same species. When canopy disturbance occurs, these juvenile sporophytes are exposed to new environmental conditions. If these juvenile sporophytes survive these new conditions, then they become a ready source of kelps to rapidly form a new canopy. This study investigated the potential of pre-existing juvenile sporophytes of E. radiata to survive post-disturbance conditions and contribute to the rapid formation of a new canopy. The potential of canopy recovery by recruitment of kelp from zoospores was also investigated. These processes were studied at different times during the summer and on reefs ranging in topographic complexity from simple, flat reefs to highly complex, rugose reefs. By tagging juvenile sporophytes after the adult kelp canopy was removed and monitoring them through time, it was demonstrated that most juveniles (> 50%) survived the change in conditions after canopy loss, with some juveniles going on to become members of a new canopy. Approximately 6–47% of tagged sporophytes died within 3–4 days after canopy removal possibly due to excessive photoinhibition and photostress as demonstrated by changes in photosynthetic performance (decreased alpha values) of juveniles. The potential contribution of juvenile sporophytes to the rapid formation of a new canopy appears to be dependent on the timing of canopy removal with late summer–autumn canopy loss favouring faster recovery. Topographically complex reefs had less short-term (7 days) survival of juvenile sporophytes than topographically simple reefs; however this difference was not carried through to the long-term (6 months) abundance of adult kelp in experimental clearings, which was greater on topographically complex reefs. Clearly, juvenile sporophytes in arrested development under existing canopies of the small kelp E. radiata are important for the rapid recovery of the kelp canopy once adults are lost through physical disturbance.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, ,