Article ID Journal Published Year Pages File Type
4397734 Journal of Experimental Marine Biology and Ecology 2007 11 Pages PDF
Abstract

Phytoplankton production and accumulation of extracellular organic carbon (EOC) was tracked during diel intervals in microcosms by inhibiting bacterioplankton assimilation of EOC with streptomycin and kanamycin. Bacterioplankton production (3H-thymidine incorporation) and metabolism (14C-glucose incorporation) were monitored in samples collected from the Potomac River estuary to determine the effect of the antibiotics. Particulate (i.e., raw water) primary production and EOC (i.e., water passing through 1.0 μm glass fiber filter) production rates were monitored to determine the impact of antibiotics on phytoplankton. In preliminary experiments, neither streptomycin nor kanamycin alone significantly inhibited bacterioplankton activity compared to controls, but when both were present secondary production and metabolism were reduced up to 90%, and remained as such for 45 h. During field evaluations using a streptomycin and kanamycin mixture (50 μM each) particulate primary production and EOC production were not statistically different in control and antibiotic treated samples indicating that the antibiotics did not negatively influence phytoplankton production rates. In the presence of antibiotics dissolved free amino acids (DFAA) and, to a lesser extent, monosaccharides were significantly elevated compared to controls. This study demonstrates that streptomycin and kanamycin are capable of inhibiting bacterioplankton metabolism and uptake of dissolved organic carbon (DOC) in the samples tested so that the contribution of EOC to the DOC pool and to bacterioplankton metabolism could be measured and assessed.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, ,