Article ID Journal Published Year Pages File Type
4398205 Journal of Experimental Marine Biology and Ecology 2006 8 Pages PDF
Abstract

Recently, interest in species abundance (SAD) distributions has been revived by introduction of a new model, the zero-sum multinomial (ZSM). Yet detailed statistical analyses show that the model does not differ from the lognormal distribution proposed in the 1940s. These analyses were based on data from tropical trees where all individuals in a defined area were identified to species. For many ecological data sets it is not possible to identify and count all individuals in a given area. Here we compare data on marine benthos and fish assemblages with data on terrestrial microfauna and ants. We show that these assemblages show similar SAD patterns and that the SADs are best described by a two-group lognormal model. Whereas the 2-group model fitted all data sets the single group model fitted all except the tropical rainforest ants. However, tests comparing the fits to the 2-group versus the single lognormal model showed that the 2-group model was a significantly better fit to the fish and insect data. The two groups are of rare and common species and the rare group dominates in all four data sets. We suggest that the reason for this is that rare species are continuously immigrating from outside the sampled area. Data on tropical tree assemblages where complete accounts were made do not show such high dominance of rare species where the sampled area is large. We conclude that SAD patterns are similar in marine and terrestrial systems that are open to immigration and that the lognormal distribution is still a valid model for SADs.

Keywords
Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , , ,