Article ID Journal Published Year Pages File Type
4400661 Limnologica - Ecology and Management of Inland Waters 2009 10 Pages PDF
Abstract
We performed a field experiment in a tropical humic coastal lagoon to evaluate periphyton biomass accrual and metabolism on three different substrates (1) plastic ribbons, (2) green and (3) senescent leaves of the emergent macrophyte Typha domingensis) over 30 days. The contribution of autotrophic biomass decreased as total biomass increased over the time. Mean periphytic ash free dry weight ranged from 0.8 to 5.6 mg cm−2, but periphyton chlorophyll a concentrations presented shorter amplitudes, which oscillated from 0.12 to 0.44 μg cm−2 throughout the experiment. Periphyton metabolism was overall heterotrophic on all substrates, especially on senescent leaves. Our data show that substrate type influenced both biomass accrual and periphyton net productivity and respiration rates throughout periphyton development and highlighted the dominance of heterotrophic metabolism. The periphyton respiration may be subsidized by both water- and substrate-derived allochthonous energy pathways, shedding light on the role of periphytic assemblages to the carbon cycling, as a source of CO2 to the system.
Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , , , , ,