Article ID Journal Published Year Pages File Type
4404578 Rangeland Ecology & Management 2012 13 Pages PDF
Abstract
La cantidad y distribución de espacios en la cubierta vegetal es un útil indicador de múltiples procesos y funciones del ecosistema. En este artículo describimos un enfoque semiautomático para estimar la distribución del tamaño del espacio de la cubierta en pastizales de imágenes digitales de alta resolución usando interpretación de imagen por observadores y técnicas estadísticas de clasificación de imagen. Consideramos dos diferentes métodos de clasificación (clasificación de máxima probabilidad y regresión logística) y enfoques basado en pixel y basado en objetivo para estimar la distribución del tamaño del espacio de la cubierta de fotografías aéreas infrarrojas con 2-3 cm de resolución UltraCamX para sitios de matorral áridos y semi áridos en Idaho, Nevada y Nuevo México. Comparamos nuestras estimaciones basadas en imagen con medidas basadas en campo para los sitios de estudio. Generalmente, el porcentaje de puntos clasificados correctamente y los coeficientes de acuerdo kappa de la clasificación de imagen de parcela fue muy alto. Parcelas con valores bajos de kappa resultaron con estimaciones de espacios de cubierta que fueron muy diferentes de los estimados basados en campo. Encontramos una fuerte relación (R2 > 0.9 en los cuatro métodos evaluados) entre imágenes y estimaciones basadas en campo del porcentaje total de la parcela con espacios de cubierta mayores de 50 cm por parcela con una clasificación kappa mayor que 0.5. El desempeño de las técnicas de sensores remotos varia de espacios pequeños de cubierta (25 a 50 cm) pero fueron muy similares de espacios de cubierta moderado (50 a 200 cm) a grande (> 200 cm). Nuestros resultados demuestran que la distribución de espacios de cubierta puede ser estimada con certeza de imágenes de alta resolución en diversos tipos de comunidades de plantas. En suma, sugerimos que las medidas de clasificación de bondad de ajuste son una herramienta potencialmente útil para identificar y explorar parcelas donde la precisión de estimación de imágenes podrá ser baja. Concluimos que la clasificación de imágenes de alta resolución basadas en puntos de entrenamiento de observar-interpretar y clasificación de imágenes es una técnica viable para estimar la distribución del tamaño del espacio de cubierta. Nuestros resultados son consistentes con otra investigación que ha buscado la habilidad de derivar indicadores de monitoreo de imágenes de alta resolución.
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , ,