| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 442415 | Graphical Models | 2008 | 8 Pages |
The pre-integrated volume rendering technique is widely used for creating high quality images. It produces good images even though the transfer function is nonlinear. Because the size of the pre-integration lookup table is proportional to the square of data precision, the required storage and computation load steeply increase for rendering of high-precision volume data. In this paper, we propose a method that approximates the pre-integration function proportional to the data precision. Using the arithmetic mean instead of the geometric mean and storing opacity instead of extinction density, this technique reduces the size and the update time of the pre-integration lookup table so that it classifies high-precision volume data interactively. We demonstrate performance gains for typical renderings of volume datasets.
