Article ID Journal Published Year Pages File Type
4458681 Organisms Diversity & Evolution 2008 17 Pages PDF
Abstract

Postembryonic development of nine species of Niphargus (Crustacea: Amphipoda) was studied, with spine development and shifts in allometric growth being combined in developmental sequences that were compared across species. The developmental sequences show high diversity with respect to the position of individual events in the sequence, as well as a high frequency of events being inapplicable in some species. Within Niphargus, the highest degree of independence between events occurs mainly in early mid-aged instars, where the shifts in position are both the largest in magnitude and also the most frequent in occurrence. Constructive troglomorphic features of subterranean species were inferred to develop more because of accelerated growth rather than a delayed offset of growth. Shifts in both relative timing and growth rate appeared to have played a role in the evolution of sexually dimorphic elongated appendages. Growth patterns differed greatly between species for individual sexually dimorphic and troglomorphic traits, hinting at their possible independent origin. The independence between developmental events that was generally apparent might indicate the existence of an important genetic basis for the extreme intrageneric morphological variation arising from numerous highly variable body parts being combined in a ‘mosaic’ manner. Moreover, we suggest that the overall diversity of the genus might actually be underestimated in light of possible convergent features accompanied by ‘cryptic’ speciation. We conclude that both sequential and growth heterochrony appear to have played a key role in the evolution of Niphargus, the most diverse genus of freshwater amphipods. A preliminary list of heterochronic characters is provided.

Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , ,