Article ID Journal Published Year Pages File Type
4493770 Journal of Hydro-environment Research 2013 11 Pages PDF
Abstract

The bed morphology in alluvial meandering rivers is composed of both alternatively distributed free bars and curvature related point bars. To study the influence of channel sinuousness on the flow and sediment transport, and consequently the bed morphology in meandering rivers, experiments were carried out in a series of curved channels with erodible bed fixed side walls. Measurements on the surface flow field, bed topography evolution and sediment transport rate were performed. Experimental results show a high velocity area near convex bank at a streamwise position a little bit upstream of the apex and the increasing in sinuousness of channel tends to increase the cross-sectional variation of flow velocity at the apex of bends. Point bars and pools appear in the channel bends in all experimental runs the bedform has an obvious tendency of downstream migration as a whole. The quasi-equilibrium bedform in the channel bends are dominated by two independent factors: the influence of curvature and the influence of flow-bed instability inside the channel. The increasing of flow rate leads to a faster development of bars and pools, as well as faster downstream migration of the entire bedform. The increase of sinuousness in channel bends leads to the increase of both the spatial and the temporal fluctuation of bedforms. Bedload is dominant in the sediment transport and the sediment transport rate tends to increase with the increasing of the inlet flow rate but decrease with the increasing of the channel sinuousness. Computational results on the bed topography in river bends was also presented based on empirical models, showing that the highly sinuous channels have more uncertainty in bed morphology and more difficult to be predicted with mathematical models when compared with slightly sinuous channel bends. The coupled interaction of point bars, mid-channel bars, alternative bars and even sand ripples are thought to complicate the mechanism and make the bed morphology difficult to predict. The experiment results can be useful for further theoretical study on the dynamics of river meanders with water depth-width ratio as small as 1/10 to 1/20 and bedload dominated sediment transport.

► Experiments were carried out in channel bends with erodible bed and fixed side walls. ► The increasing in channel sinuousness leads to an increase of the cross-sectional flow variations. ► Higher flow rate leads to a faster development of the bars and pools, and a higher bedform migration rate. ► The increase in channel sinuousness leads to the increase of spatial and temporal bedform fluctuations.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, ,