Article ID Journal Published Year Pages File Type
4494145 Journal of Integrative Agriculture 2015 9 Pages PDF
Abstract

Oxalic acid (OA) is considered as an important pathogenetic factor of some destructive diseases caused by some fungal pathogens such as Sclerotinia sclerotiorum. Oxalate degradation is important for plant health, and plants that contain oxalate oxidase (OXO) enzymes could breakdown oxalate into CO2 and H2O2, which subsequently evokes defense responses. However, some species, such as Arabidopsis thaliana, have no oxalate oxidase activity identified to date. The present study aims to develop transgenic Arabidopsis expressing a wheat oxalate oxidase, to test for the response to OA exposure and fungal infection by S. sclerotiorum. The results showed that the transgenic Arabidopsis lines that expressed the wheat OXO exhibited enhanced resistance to OA exposure and S. sclerotiorum infection in the tolerance assays. In the same manner, it could convert OA to CO2 and H2O2 to a higher extent than the wild-type. Intensive osmotic adjustments were also detected in the transgenic Arabidopsis lines. The higher level of produced H2O2 subsequently induced an elevated activity of antioxidant enzymes including superoxide dismutase (SOD) and peroxidase (POD) in the transgenic Arabidopsis plants. The present study indicated that the expression of a gene encoding wheat OXO could induce intensive osmotic adjustments and hydrogen peroxide related defense response, and subsequently increased tolerance to S. sclerotiorum in transgenic A. thaliana.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)