Article ID Journal Published Year Pages File Type
4494353 Journal of Integrative Agriculture 2015 11 Pages PDF
Abstract

Soybean (Glycine max (L.) Merr.) is a typical short-day and warm season plant, and the interval between emergence and flowering has long been known to be regulated by environmental factors, primarily photoperiod and temperature. While the effects of photoperiod and temperature on soybean flowering have been extensively studied, a dissection of the component photo-thermal effects has not been documented for Chinese germplasm. Our objective of the current study was to evaluate the independent- and interactive-photo-thermal responses of 71 cultivars from 6 ecotypes spanning the soybean production regions in China. These cultivars were subjected in pot experiments to different temperature regimes by planting in spring (low temperature (LT)) and summer (high temperature (HT)), and integrating with short day (SD, 12 h), natural day (ND, variable day-length), and long day (LD, 16 h) treatments over two years. The duration of the vegetative phase from emergence to first bloom (R1) was recorded, and the photo-thermal response was calculated. The outcome of this characterization led to the following conclusions: (1) There were significant differences in photo-thermal response among the different ecotypes. High-latitude ecotypes were less sensitive to the independent- and interactive-photo-thermal effects than low-latitude ecotypes; and (2) there was an interaction between photoperiod and temperature, with the effect of photoperiod on thermal sensitivity being greater under the LD than the SD condition, and with the effect of temperature on photoperiodic sensitivity being greater under the LT than the HT condition. The strengths and limitations of this study are discussed in terms of implications for current knowledge and future research directions. The study provides better understanding of photo-thermal effects on flowering in soybean genotypes from different ecotypes throughout China and of the implications for their adaptation more broadly.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)