Article ID Journal Published Year Pages File Type
4494701 Journal of Integrative Agriculture 2014 11 Pages PDF
Abstract

Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in a variety of organisms. In plants, its biosynthesis is catalyzed by two key enzymes: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). In the present study, a TPS gene, named IbTPS, was first isolated from sweetpotato (Ipomoea batatas (L.) Lam.) cv. Lushu 3 by rapid amplification of cDNA ends (RACE). The open reading frame (ORF) contained 2 580 nucleotides encoding 859 amino acids with a molecular weight of 97.433 kDa and an isoelectric point (pI) of 5.7. The deduced amino acid sequence showed high identities with TPS of other plants. Real-time quantitative PCR analysis revealed that the expression level of IbTPS gene was significantly higher in stems of Lushu 3 than in its leaves and roots. Subcellular localization analysis in onion epidermal cells indicated that IbTPS gene was located in the nucleus. Transgenic tobacco (cv. Wisconsin 38) plants over-expressing IbTPS gene exhibited significantly higher salt tolerance compared with the control plant. Trehalose and proline content was found to be significantly more accumulated in transgenic tobacco plants than in the wild-type and several stress tolerance related genes were up-regulated. These results suggest that IbTPS gene may enhance salt tolerance of plants by increasing the amount of treahalose and proline and regulating the expression of stress tolerance related genes.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)