Article ID Journal Published Year Pages File Type
4495996 Journal of Theoretical Biology 2016 13 Pages PDF
Abstract

•We used in silico integrative approach for identification of putative bifunctional Plk1 inhibitors.•Identification of 26 novel bifunctional Plk1 inhibitors that fulfilled ADMET and Rule of Five properties.•Integration of screening with pharmacophore feature mapping and dynamics simulation studies.

Polo like kinase (Plk1) is a master regulator of cell cycle and considered as next generation antimitotic target in human. As Plk1 predominantly expresses in the dividing cells with a much higher expression in cancerous cells, it serves as a discriminative target for cancer therapeutics. Here we implied a novel and promising integrative strategy to identify "bifunctional" Plk1 inhibitors that compete simultaneously with ATP and substrate for their binding sites. We integrated structure-based virtual screening (SBVS) and molecular dynamics simulations with emphasis on unique structural properties of Plk1. Through screening of 20,000 compounds, nearly ~2000 hits were enriched and subjected to SBVS against ATP and substrate binding sites of Plk1. Subsequently, on the basis of their binding abilities to Plk1 kinase and polo box domains, filtration of candidate hits resulted in the isolation of 26 compounds. By exclusion of close analogs or isomers, 10 unique compounds were selected for detailed study. A representative compound was subjected to molecular dynamics simulation assay to have deep structural insights and to gauge critical structural crunch for inhibitor binding against kinase and polo box domains. Our integrative approach may complement high-throughput screening and identify bifunctional Plk1 inhibitors that may contribute in selective targeting of Plk1 to elicit desired biological process.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , ,