Article ID Journal Published Year Pages File Type
4496547 Journal of Theoretical Biology 2012 15 Pages PDF
Abstract

Theoretical works have shed light on the impact of natural selection in shaping phenotypes and genotypes. Wagner's canalization model (Wagner, 1996) is one of the well-established models which describe emergent properties of evolving gene networks. In this paper, we propose a deeper theoretical understanding of this well-studied model and we extend its conclusions by characterizing new emergent properties of evolving networks. We start with the review of the Wagner model and its applications to robustness of gene networks, gene duplication and evolution of sexual reproduction. Then, we perform a mathematical analysis to gain a better understanding of the model evolutionary dynamics. Doing so paves the way to study systematically the impact of mutation rates on compatibility of genotypes, variability of phenotypes and viability of offspring in evolving populations. Finally, we derive new observations concerning two emergent properties concerning evolved genomes robustness. First, we show that selecting for development towards a specific phenotype also contributes to enhance the stability of other alternative phenotypes which can be revealed under stress. Second, we find that this generalized canalization also renders gene networks more robust towards gene deletion, loss of interactions, perturbations of regulation activity and mutations. Therefore, not only evolution selects for individuals robust to types of perturbation they have faced in previous generations, but also robust to types of perturbations they have never experienced.

► We study the evolution of gene networks in Wagner's canalization model. ► Population diversity decreases faster under selection for network stability. ► Each evolved network exhibits multiple viable developmental pathways. ► Evolved networks exhibit increase robustness to perturbations. ► The variance of these measures decreases with mutation rate.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, ,