Article ID Journal Published Year Pages File Type
4497002 Journal of Theoretical Biology 2011 9 Pages PDF
Abstract

We present a mathematical model that describes treatment of a fungal infection in an immune compromised patient in which both susceptible and resistant strains are present. The resulting nonlinear differential equations model the biological outcome, in terms of strain growth and cell number, when an individual, who has both a susceptible and a resistant population of fungus, is treated with a fungicidal or fungistatic drug. The model demonstrates that when the drug is only successful at treating the susceptible strain, low levels of the drug cause both strains to be in stable co-existence and high levels eradicate the susceptible strain while allowing the resistant strain to persist or to multiply unchecked. A modified model is then described in which the drug is changed to one in which both strains are susceptible, and subsequently, at the appropriate level of treatment, complete eradication of both fungal strains ensues. We discuss the model and implications for treatment options within the context of an immune compromised patient.

► Fungal infection in an immune compromise host is modeled. ► Resistance to anti-fungal agents is considered. ► Use of antifungal agents and their mechanism of action is considered. ► The model's usefulness in the clinic is discussed.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , ,