Article ID Journal Published Year Pages File Type
4497172 Journal of Theoretical Biology 2011 13 Pages PDF
Abstract

GnRH neurons are hypothalamic neurons that secrete gonadotropin-releasing hormone (GnRH) which stimulates the release of gonadotropins, one of the crucial hormones for sexual development, fertility and maturation. A mathematical model was built to help elucidate the mechanisms underlying electrical bursting and synchronous [Ca2+] transients in GnRH neurons (Lee et al., 2010). The model predicted that bursting in GnRH neurons (at least of the short-bursting type) requires the existence of a [Ca2+]-dependent slow after-hyperpolarisation current (sIAHP-UCL), and this predicted current was found experimentally. GnRH behaviour under a wide range of conditions (inhibition of Na+ channels, IP3 receptors, [Ca2+]-dependent K+ channels, or Ca2+ pumps, or in the presence of zero extracellular [Ca2+]) is successfully reproduced by the model. In this paper, a simplified version of the previous model, with the same qualitative behaviour, is constructed and studied using timescale separation techniques and bifurcation analysis.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , ,