Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4497365 | Journal of Theoretical Biology | 2010 | 8 Pages |
Abstract
Secretory vesicles express a periodic multimodal size distribution. The successive modes are integral multiples of the smallest mode (G1). The vesicle content ranges from macromolecules (proteins, mucopolysaccharides and hormones) to low molecular weight molecules (neurotransmitters). A steady-state model has been developed to emulate a mechanism for the introduction of vesicles of monomer size, which grow by a unit addition mechanism, G1+GnâGn+1 which, at a later stage are eliminated from the system. We describe a model of growth and elimination transition rates which adequately illustrates the distributions of vesicle population size at steady-state and upon elimination. Consequently, prediction of normal behavior and pathological perturbations is feasible. Careful analysis of spontaneous secretion, as compared to short burst-induced secretion, suggests that the basic character-code for reliable communication should be within a range of only 8-10 vesicles' burst which may serve as a yes/no message.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Agricultural and Biological Sciences (General)
Authors
Eyal Nitzany, Ilan Hammel, Isaac Meilijson,